Language-Agnostic Syllabification with Neural Sequence labeling

Jacob Krantz* Maxwell Dulin Paul De Palma

Department of Computer Science, Gonzaga University

Spokane, WA

jkrantz@jkrantz@zagmail.gonzaga.edu

*now at Oregon State University

Preliminaries: The Syllable

CONSONANTS (PULMONIC)

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2018)

Phone: A unit of sound. t in "tip "

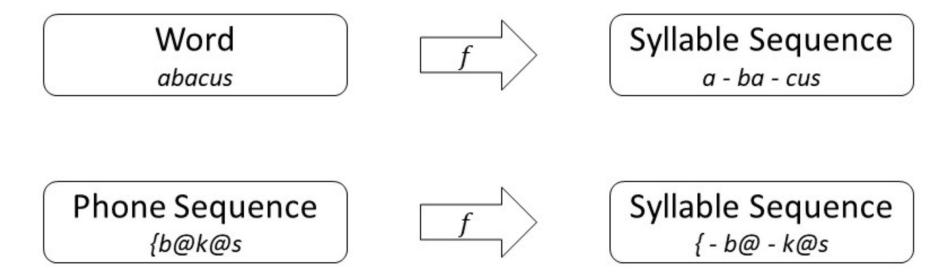
- Syllable: A single segment of uninterrupted phones
 - Highly debated among linguists
 - Not all words have a set syllable pattern; can be multiple

	Bilabial	Labiodental	Dental Alveolar	Postalveolar	Retrof	lex	Palatal		Velar	Uvi	ılar	Phary	ngeal	Glott	tal
Plosive	p b		t d		t.	d	с ј		k g	q	G			2	
Nasal	m	ŋ	n]	η	ր		ŋ		Ν				
Trill	В		r								R				
Tap or Flap		\mathbf{V}	1		9	r									
Fricative	φβ	f v	$\theta \delta s z$	$\int 3$	Ş	Z,	çj		хγ	χ	R	ħ	ſ	h.	ĥ
Lateral fricative			र्न दि												
Approximant		υ	L			Ł	j		щ						
Lateral approximant			l			l	Л	•	L						

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

© 2018 IPA

Preliminaries: Syllabification



Existing Automatic Approaches

Dictionary-Based

- Requires a lot of manual effort
- Cannot handle new words

Rule-Based

- Too many rules (exceptions, exceptions to exceptions, ...)
- Not very accurate, rigid

NIST tsylb software package (*Fischer, 1996*)

- Implementation of Daniel Kahn's 1979
 MIT dissertation
- Around 3000 hand transcribed rules for English syllabification

Existing Automatic Approaches: Data-Driven

Strength:

- Learn the function *f* from examples
- No hand crafted linguistic knowledge needed outside of the dataset
- Given labeled data, can possibly learn *f* for any language

Challenge:

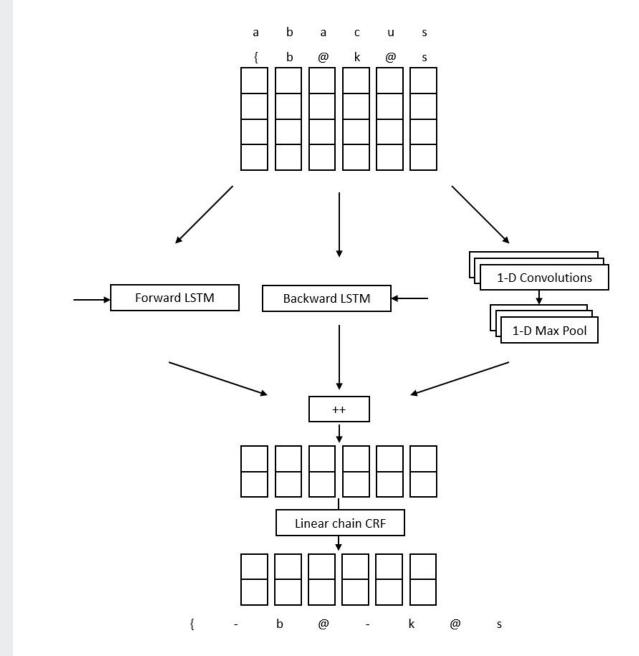
• Limited labeled training data.

Hidden Markov models (HMMs), support vector machines (SVMs), and conditional random fields (CRFs)(Demberg et al, 2006)(Bartlett et al, 2009)(Singh et al, 2016)

Contributions

 Developed a unique and general neural network architecture for data-driven syllabification that achieves or competes with state of the art language-specific models.

Network Architecture Diagram



Method

Treat as a labeling task

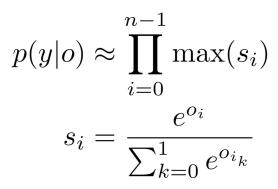
Components:

- Phone Embeddings
- Bi-LSTM
- CNN
- Linear-Chain CRF

$$\hat{y} = \arg\max_{y} p(y|o)$$

Method: Prediction

Option 1: Softmax

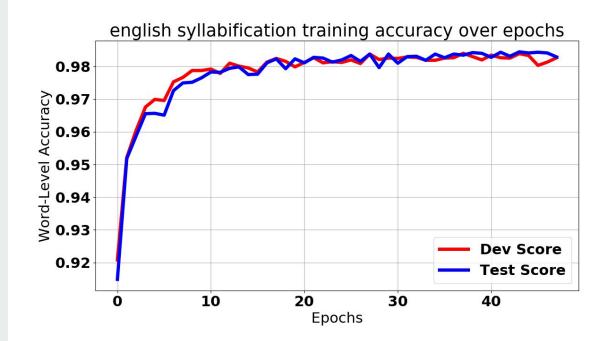


Option 2: Conditional Random Field (*Lafferty et al, 2001 & Huang et al, 2015*)

$$p(y|o) \approx \frac{1}{Z(o)} \prod_{i=1}^{n-1} \exp\left\{\sum_{k=1}^{K} \theta_k f_k(y_i, y_{i-1}, o_i)\right\}$$

Method: Training

- Minibatch by length
- Adam optimizer
- Early stopping



Training time on one GPU: 30-45 minutes (English dataset)

Contributions

 Developed a unique and general neural network architecture for data-driven syllabification that achieves or competes with state of the art language-specific models.

2. Performed a more expansive evaluation across languages to better test language generalizability

Indo-European: Romance

Evaluation: Datasets & Languages

Language	Italian	French
Dataset	Festival (Taylor et al, 1998)	OpenLexique (New et al, 2004))
Words	440K	139K

Sino-Tibetan: Tibeto-Burman

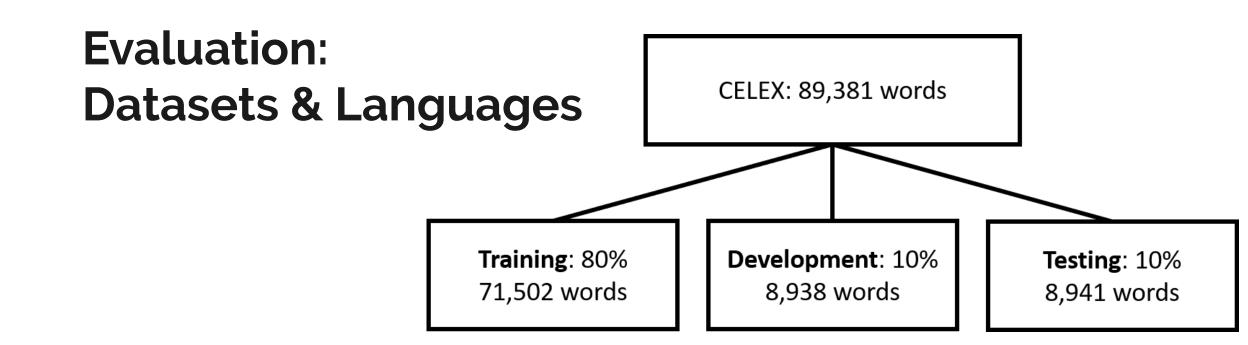
Language	Manipuri	
Dataset	IIT-Guwahati (Singh et al, 2016))	
Words	17K	

Language Isolate

Language	Basque		
Dataset	E-Hitz (Perea et al, 2006)		
Words	100K		

Indo-European: West Germanic

Language	English	Dutch		
Dataset	CELEX (Baayen et al, 1995)	CELEX (Baayen et al, 1995)		
Words	89K	328K		



Hyperparameters were tuned on the English CELEX dataset Experiments were repeated 20 times

Existing Syllabifiers

Dataset	Syllabifier	Method	%
English CELEX	<i>tsylb</i> [10]	Rule-based	93.72
English CELEX	HMM-GA [15]	Data-driven	92.54
English CELEX	Learned EBG [41]	Data-driven	97.78
English CELEX	SVM-HMM [13]	Data-driven	98.86
Dutch CELEX	SVM-HMM [13]	Data-driven	99.16
Festival	Liang hyphenation [40]	Data-driven	99.73
OpenLexique	Liang hyphenation [40]	Data-driven	99.21
IIT-Guwahat	Entropy CRF [36]	Hybrid	97.5
E-Hitz	Liang hyphenation [40]	Data-driven	99.68

Our Models

Results

Model	English CELEX	Dutch CELEX	Festival	OpenLexique	IIT-Guwahat	E-Hitz
Base	98.5 ± 0.1	99.47 ± 0.04	99.990 ± 0.005	99.98 ± 0.01	94.9 ± 0.3	99.83 ± 0.07
Small	98.2 ± 0.2	99.39 ± 0.04	99.990 ± 0.004	99.987 ± 0.007	95.4 ± 0.3	99.68 ± 0.06
Base-Softmax	97.7 ± 0.2	99.24 ± 0.06	99.984 ± 0.003	100.00 ± 0.01	94.7 ± 0.3	99.71 ± 0.04

Highlighted Examples

Word	Generated	Target		
misinterpretation	mIs-In-t3-prI-t1-SH	mIs-In-t3-prI-t1-SH		
achieved	@-Jivd	@-Jivd		
worrisome	wV-rI-sF	wV-rI-sF		
public-address systems	pV-blI-k-@-d-rEs-sI-st@mz	pV-blIk-@-drEs-sI-st@mz		

Phones in DISC format

- Successful with long words and various conjugations
- Struggled with hyphenation and spaces

Conclusion

- 1. Developed a unique, general, and language-agnostic neural network architecture for data-driven syllabification
 - a. Components: phone embeddings, BiLSTM, CNN, CRF
- 2. Performed a more expansive evaluation across languages to better test language generalizability

Performing both RNN and CNN processing over the same input can increase accuracy. (Ma & Hovy, 2016) showed this works for cnn over characters, rnn over words which is similar it different.

Going forward:

• Explore ways to harness the power of neural networks when faced with limited training data

References

- W. Fisher, "Tsylb syllabification package," 1996, accessed 1 July, 2019 from: <u>https://www.nist.gov/itl/iad/mig/tools</u>.
- V. Demberg, "Letter-to-phoneme conversion for a german text-to-speech system," Master's thesis, University of Stuttgart, 2006.
- S. Bartlett, G. Kondrak, and C. Cherry, "On the syllabification of phonemes," in Proceedings of NAACL-HLT: 2009. ACL, 2009, pp. 308–316.
- L. G. Singh, L. Laitonjam, and S. R. Singh, "Automatic syllabification for manipuri language," in Proceedings of COLING 2016: Technical Papers, 2016, pp. 349–357.
- J. Lafferty, A. McCallum, and F. C. Pereira, "Conditional random fields: Probabilistic models for segmenting and labeling sequence data," in Proceedings of the 18th ICML, 2001, pp. 282–289.
- Z. Huang, W. Xu, and K. Yu, "Bidirectional lstm-crf models for sequence tagging," arXiv preprint arXiv:1508.01991, 2015.

Thank you!

- Funding provided by the McDonald Work Award, established generously by Robert and Claire McDonald
- AWS Cloud Credits for Research Program